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* Review of Zholents' concept

* Basic analysis of compression

e Lattice options

* Lifetime 1ssues

* Emittance degradation mechanisms
* Error sensitivities

* Photon beam properties

* Optimization of compression
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Zholents' Transverse Rt Chirp Concept

(Adapted from A. Zholents' August 30, 2004 presentation at APS Strategic Planning Meeting. )

RF deflecting cavity

Ideally, second cavity
exactly cancels effect
of first if phase advance
1s n*180 degrees

Cavity frequency
1s harmonic A of
ring rf frequency

Radiation from . f .
WCEIERERTTURIRRINNT tadl electrons Pulse can be sliced

— or compressed with
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- Radiation from t crystal
Undulator head electrons
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Compression Analysis

* Assuming everything is linear and gaussian, the minimum
achievable pulse length for a long beamline is

Electron beam

energy
% For 6 MV, 2800MHz
O-t xray V h ()U \/O- +O_y rad # (h=8) deﬂecting
/ \ system, get ~0.4 ps!
Deflecting Unchirped e-beam  Divergence due
rf voltage &  divergence (typ. to undulator (typ.
frequency 2~3 urad) ~5 urad)

* Normal APS bunch 1s 40 ps rms
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Lattice Options

1 sector spacing

2ID+1BM
2 sector spacing
| . = ’ | I 41D + 2 BM
Px
0.20} 8,
T
0.15 Beta function increase
E required to get the right
X010 phase advance
0.05} .
Helps compression by
I RTINS, making divergence smaller
20 40 60 380 100
S ( M ) After V. Sajaev
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[Lifetime Issues

* The maximum angular deflection seen by any particle i1s V/E

* We can preserve lifetime by requiring

DV
T_I_loo-y,sliceSA

* With A=t4mm aperture and D=3.7m cavity-to-aperture
distance, V<7.2 MV gives 100 aperture

* We need hV=48MYV to get 0.4 ps rms
* Must get large hV via h instead of V

— h=8 is practical limit for power sources’
- 6 MV may be possible for super-conducting system'

'G. Waldschmidt
’D. Horan
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Rf Curvature and Frequency Choice

1.0 | | | | ._
V:6, h:4
O. 5 | V:4, h:6 e T |
’"_5“
>
- 0.0
>
-0.9L _
.0p, T -
-150 -100 -50 0 20 100 150

t (ps)

Can get the same
compression as long as
h*V 1s constant

Higher V and lower h:
more linear chirp and
less need for slits

Higher h and lower V:
smaller maximum
deflection and less
lifetime impact

Higher h and maximum
V: shortest pulse,
acceptable lifetime
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Causes of Emittance Degradation

e [ .ess than total kick cancellation will cause emittance
Increase

* Effects present in a perfect machine
— Momentum compaction and beam energy spread
— Sextupole nonlinearity
— Chromaticity and beam energy spread
* Additional effects in an imperfect machine
— Lattice errors
— Lattice coupling between cavities
— Roll of cavities about beam axis

— Rf phasing and voltage errors
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Sextupole Effects

* Sextupoles are necessary y
— Correct chromatic focusing aberrations . % |
X

— Defeat beam instabilities
* Sextupoles have undesirable side-effects ’ "

— Phase advance varies with amplitude

* Kick cancellation varies with amplitude B :lm( *—y7)
2

y
¢ Vertical emittance increases

: : . B.=mxy
— Horizontal and vertical motion gets coupled
* Large vertical motion from cavities gets coupled into horizontal

* Leads to large horizontal emittance growth

* Plausible solution: turn off sextupoles between cavities
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Interior Sextupoles and Horizontal Emittance

On T T T T T T On
10 1 off - { off
8l
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3'5 [ T T T T T T ] on
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Interior Sextupoles and Vertical Emittance

2000[ " On
Off
1500 1
fn; 1000}
500L
ol le | | | | | | | | |
Q 1000 2000 3000 4000 5000 Q 1000 2000 3000 4000 5000
Turn Turn
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On .
120} 1o+ Damping helps sextupoles-on
100% case and QE hurts sextupoles
N 80 -
E -
£ 6| off case
" 40| Nominal 25pm level |
ominal 25pm leve ..
20} - Are we limited to 2 MV?
0L i
Q 1000 2000 3000 4000 5000
Turn
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Optimizing Sextupoles

e Can directly minimize vertical and horizontal emittance'
- Allow elegant to vary the interior sextupoles
— APS has individual supplies for each sextupole
* Important factors in making this work”
— Use lattice with lower vertical beta functions
— Zero chromaticity between cavities

— Don't let sextupoles change too much

* If these are not respected, the dynamic aperture 1s tiny

* Sajaev's solution 1s used 1n all subsequent simulations

'M. Borland
’V. Sajaev
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Optimized Sextupoles

* Opens possibility to increase the number of sectors
that could benefit from the compression scheme

Number of sectors Vertical emittance
2 70 pm
3 59 pm
4 41 pm

* Number of sectors limited by dynamic aperture reduction

* (Can also make the starting vertical emittance smaller (as small as
8 pm) instead of starting with nominal 25 pm

Content courtesy V. Sajaev, APS.
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Error Sensitivities

* So far, all calculations assumed a perfect machine

* Sensitivities have been estimated for several types of static
error

* Assumed 6 MV and h=8
* Simulations include QE effects and damping

— In simulations, effects are turned on instantaneously and so
produce a transient

— Damping reduces emittance degradation

— This implies that dynamic errors will have stronger effects
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[attice Errors

e [ attice errors can result in

— Phase advance errors

— Beta function errors
* Sources include

— Beamline steering

— Power supply drift

— Misalignments

e Lattice correction gives

— 1% beta function errors’

—- <0.001 tune error’

'V. Sajaev and L. Emery, EPAC 2002, p. 742

°L. Emery
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x-y Coupling

* Coupling y motion into x plane can cause problems
* May result from

— Rolled cavities

— Rolled quadrupole or sextupole magnets
* Simulations show that this i1sn't an 1ssue for

- Few mrad alignment of cavities

- Typical 0.25 mrad' alignment of magnets

'H. Friedsam
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Intercavity Voltage Error

* Imparted errors to 100[ <
one of the cavities
* LCLS pulsed S- Toll o
band system . ©
requires <0.1% rms & 20 o
voltage jitter' . o
70 . ©
&
60| © o o
-1.0 -0.5 0.0 0.0 1.0

'LCLS Design Study Report, SLAC R-521 (1998).
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Intercavity Phase Error

<y> /oy (%)

T T é

61.5 .
o
o
61.0
o
o
60.5 &
o
o
o

600l © | | ¥

0.00 0.05 0.10 0.15 0.20

deltaPhi (deg)
OFd o o0 ¢ & o o o ¢ é.-Ins;de
+ Qutside
-10} + +
+
-20[ +
+
-301 +
+
~40| +
+
.I.

0.00 0.05 0.10 0.15 0.20

deltaPhi (deg)

Producing Chirped Electron Beams in the APS

Michael Borland, 5/6/2005

<y>/o, (%)

1.4 ' ' ' ] Jr_I”i,'!f’e
12| i _0ut_|s_|de
1.0} ¥ & T

0.8| L et

0.6[ g ®

0.4 + o

0.2] 5 °

0.0| ¢ ' |

0.00 0.056 0.10 0.15 0.20
deltaPhi (deg)

SLAC pulsed S-band systems have
<0.1 deg rms phase jitter'

Most difficult issue 1s orbit

disturbance outside the inter-
cavity region.

'R. Akre et al., SLAC PUB 9421.
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Undulator Radiation Pattern

Central cone opening angle ~5 urad rms

100¢ = Log
intensity
S0L {25
5
E 2.0
:i Ot 158
9_\ 1.0}
-50L -
o,5l
-100L -
-1 00 -50 9 o0 100

Data courtesy R. Dejus

For estimates, use

A
707\ar

Simulations use

distribution function'

nNT y2 0°
1+K°

S(0)~sinc”’

'K.J. Kim, AIP 565 (1989)
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Slicing Results for 10 keV, UA

D
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Need for Slits with Compression

Without slits, rf curvature
prevents complete compression

o . . B
With slits, we lose intensity but g
get complete compression >

.8  Science and U.S. Department
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Compression Results for 10 keV, UA'

| | | | | | | | | h:4_
S5.0L i
R=5
2.5 i
. N=0
4 2.0L i
~1.5] | h=7
< 10l | h=8
0.5 i
0.0 6 MV detlection |

0 5 1015 20 25 30 35 40
Slit Half-Height (mm)

'3.3cm period, 2.4m length
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Compression Results tor 10 keV, UA

I I | | ! ! h:4
5.0 Optics losses not included. -
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> 2.0| | "0
b _
o 1.5] | h=/
5 1. 01 _ . i N=23
= —
0.0 |
0.0l 6 MV deflection |
0 20 40 060 80 100
Transmission (%) . Shasti

U.S. Department

A Coveerna - Producing Chirped Electron Beams in the APS Office of Science @
£50 ooy Michael Borland, 5/6/2005 of Energy  waw=l




Compression Results tor 10 keV, UA
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Is a Warm Pulsed System Better?

* It has been argued' that a pulsed system would be better

* Most pump-probe experiments use ~1kHz lasers, so continuous
beam isn't useful

* Many experiments run from very short to very long time scales

- Many experiments employ choppers with small apertures and hence
cannot vary pulse length by varying slits

— Having a chirped pulse just throws away intensity when looking at
long time scales

— Such experiments can be done more efficiently if the chirp can be
turned off at will

* A pulsed chirping system lets the user do this via timing

'P. Anfinrud
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Pulsed System Considerations

* Could charge and discharge cavities at 100~1000 Hz
— Could start low and upgrade later

e Pulse could be of order the revolution time (3.68 us)
- Power load should be manageable
— 6 MV should be no problem
— Emittance effects greatly reduced

* Ideally make the rf pulse last several revolution times
— Chirp would be time-modulated, not just on/off

— This could be an upgrade
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Pulsed System Considerations

* Advantages over superconducting
— Short development time
— Much cheaper
* (Can we maintain the required phase tolerance?
— Need single klystron feeding both cavities
— Need careful temperature control of
* Cavities
* Long waveguide runs

* Will the pulse-to-pulse chirp variation be acceptable?
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Summary

Zholents' scheme as applied to APS has been studied
extensively

Tolerances mostly manageable
— Rf phase tolerance will be the hardest
— Didn't simulate dynamic errors

Need to look at stability of the delivered pulses

Picosecond x-ray pulses appear feasible with 50~70%
transmission through slits

Case for a pulsed system 1s plausible
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